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Exercise 1. Warm-up

• Let M be a random real symmetric orthogonal matrix, that is an N × N
matrix satisfying M = Mᵀ = M−1. Show that all the eigenvalues of M are
±1.

• Let X be a Wigner matrix, i.e. an N × N real symmetric matrix whose
diagonal and upper triangular entries are iid Gaussian random numbers with
zero mean and variance σ2/N. You can use X = σ/

√
2N(H + HT ) where H

is a non-symmetric N ×N matrix will with iid standard Gaussians.

• The matrix E will be E = M + X. E can be thought of as a noisy version of
M. The goal of these exercise is to understand numerically how the matrix
E is corrupted by the Wigner noise.

• The matrix P+ is defined as P+ = 1
2
(M + 1N). Convince yourself that P+

is the projector onto the eigenspace of M with eigenvalue +1. Explain the
effect of the matrix P+ on eigenvectors of M.

• An easy way to generate a random matrix M is to generate a Wigner matrix
(independent of X), diagonalize it, replace every eigenvalue by its sign and
reconstruct the matrix. The procedure does not depend on the σ used for
the Wigner.

• Using the computer language of your choice, for a large value of N (as large
as possible while keeping computing times below one minute), for a three
interesting values of σ of your choice, do the following numerical analysis.
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(a) Plot a histogram of the eigenvalues of E, for a single sample first, and then
for many samples (say 100).

(b) From your numerical analysis, in the large N limit, for what values of σ do
you expect a non-zero density of eigenvalue near zero.

(c) For every normalized eigenvector vi of E, compute the norm of the vector
P+vi. For a single sample, do a scatter plot of |P+vi|2 vs λi (its eigenvalue).
Turn your scatter plot into an approximate conditional expectation value
(using an histogram) including data from may samples.

(d) Build an estimator Ξ(E) of M using only data from E. We want to minimise
the error e = 1

N
||(Ξ(E) − M)||2F where ||A||2F = TrAAᵀ. Consider first

Ξ1(E) = E and then Ξ0(E) = 0. What is the error e of these two estimators.
Try to build an ad-hod estimator Ξ(E) that has a lower error e than these
two.

(e) Show numerically that the eigenvalues of M are not iid. For each sample M
rank its eigenvalues λ1 < λ2 < . . . < λN . Consider the eigenvalue spacing
sk = λk − λk−1 for eigenvalues in the bulk (.2N < k < .3N and .7N <
k < .8N). Make an histogram of {sk} including data form 100 samples.
Make a 100 pseudo-iid samples: mix eigenvalues for 100 different samples
and randomly choose N from the 100N possibilities, do not choose the same
eigenvalue twice for a given pseudo-iid sample. For each pseudo-iid sample,
compute sk in the bulk and make an histogram of the values using data from
all 100 pseudo-iid samples. (Bonus) Try to fit a exponential distribution to
these two histograms. The iid should be well fitted by the exponential but
not the original data (not iid).
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