Homework 2

Marc Potters Introduction to Random Matrix Theory and its applications to data analysis

> January 25, 2019 due February 8, 2019

Exercise 1. Im $g_N(x - i\eta)/\pi$ is a good approximation to $\rho(x)$ for small positive η , where $g_N(z)$ is the sample Stieljes transform $(g_N(z) = (1/N) \sum_k 1/(z - \lambda_k))$. Numerically generate a Wigner matrix of size N and $\sigma^2 = 1$.

- 1. For three values of $\eta \{1/N, 1/\sqrt{N}, 1\}$, plot $\operatorname{Im} g_N(x i\eta)/\pi$ and the theoretical $\rho(x)$ on the same plot for x between -3 and 3.
- 2. Compute the error as a function of η where the error is $(\rho(x) \text{Im}g_N(x i\eta)/\pi)^2$ summed for all values of x between -3 and 3 spaced by intervals of 0.01. Plot this error for η between 1/N and 1. You should see that $1/\sqrt{N}$ is very close to the minimum of this function.

Exercise 2. We saw in class that the Stieljes transform of a large Wishart matrix (with q = N/T) should be given by

$$g(z) = \frac{z + q - 1 \pm \sqrt{(z + q - 1)^2 - 4qz}}{2qz} \tag{1}$$

where the sign of the square-root should be chosen such that $g(z) \to 1/z$ when $z \to \pm \infty$.

- 1. Show that the zeros of the argument of the square-root are given by $\lambda_{\pm} = (1 \pm \sqrt{q})^2$.
- 2. The function

$$g(z) = \frac{z + q - 1 - \sqrt{z - \lambda_-}\sqrt{z - \lambda_+}}{2qz}$$
(2)

should have the right properties. Show that it behaves as $g(z) \to 1/z$ when $z \to \pm \infty$. By expanding in powers of 1/z up to $1/z^3$ compute the first and second moments of the Wishart distribution.

3. Show that Eq. (2) is regular at z = 0 when q < 1. In that case, compute the first inverse moment of the Wishart matrix $\phi(\mathbf{E}^{-1})$. What happens when $q \to 1$? Show that Eq. (2) has a pole at z = 0 when q > 1 and compute the value of this pole.

4. The non-zero eigenvalues should be distributed according to the Marčenko-Pastur distribution

$$\rho_q(x) = \frac{\sqrt{(x - \lambda_-)(\lambda_+ - x)}}{2\pi q x}.$$
(3)

Show that this distribution is correctly normalised when q < 1 but not when q > 1. Use what you know about the pole at z = 0 in that case to correctly write down $\rho_q(x)$ when q > 1.

- 5. In the case q = 1, Eq. (3) has an integrable singularity at x = 0. Write a simpler formula for $\rho_1(x)$. Let u be the square of an eigenvalue from a Wigner matrix of unit variance, i.e. $u = y^2$ where y is distributed according to the semi-circular law $\rho(y) = \sqrt{4 y^2}/(2\pi)$. Show that u is distributed according to $\rho_1(x)$. This result is a priori not obvious as a Wigner matrix is symmetric while the square matrix \mathbf{H} is generally not, nevertheless moments of high dimensional matrices of the form \mathbf{HH}^{\intercal} are the same whether the matrix \mathbf{H} is symmetric or not.
- 6. Generate three matrices $\mathbf{E} = \mathbf{H}\mathbf{H}^{\mathsf{T}}/T$ where the matrix \mathbf{H} is a $N \times T$ matrix of iid Gaussian numbers of variance 1. Choose a large N and three values of T such that q = N/T equals $\{1/2, 1, 2\}$. Plot a normalised histogram of the eigenvalues in the three cases vs the corresponding Marčenko-Pastur distribution, don't show the peak at zero. In the case q = 2, how many zero eigenvalues do you expect? How many do you get?