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1 The double descent paradox in Machine learning

The practical success of deep neural networks in machine learning came also
in apparent contradiction with the standard theory of statistical learning
regarding overfitting mechanisms [1]. The problem is stated as follows: sup-
pose we want to learn a function

y = fθ(x)

based on a training data set Dtrain = {(xk, yk), k = 1, . . . N}, which relates
some input data x ∈ RD (a time series, an image. . . ) to some real observation
y ∈ R for a regression problem or to a label y ∈ {0, 1} for a classification
problem. θ ∈ RM is a vector of parameters which maybe the weights of
a linear regression, the parameters of a neural network or any ML model.
The function is typically learned by performing a gradient descent on a
loss function `(θ|Dtrain) and the central question then is to know whether
the model will generalize well on unseen data, i.e. what is the behaviour
of `(θ|Dtest), where Dtest is a test set of data. The traditional scenario
expected from statistical learning theory is that for fixed N when varying the
number of parameters M the train error will monotonically decrease to zero
when reaching some critical value α0 of the interpolation ratio α = M/N
(= 1 typically for a linear regression) while the generalization error will
reach a minimum for some value α? < α0 and increase again drastically
for α > α? because of overfitting. The surprise came when realizing that
increasing further α may possibly yield a better solution at some point far in
the over parameterized regime when some implicit regularization is present.



Actually, in close analogy with the analysis of the spectrum of disordered
quantum systems, this question can be investigated with help of a field theory
formalism (as e.g. in [2]) where the bare two-point function corresponds to
the neural tangent kernel introduced recently [3]

G0(x,x
′) = ∇Tθ fθ0(x)∇Tθ fθ0(x′)

corresponding to an L2 regularization of the solutions, while the central
object of interest is obtained by including a random potential attached to the
training data. Within this framework the generalization error as a function
of α can be analyzed by means of the spectral properties of the disordered
kernel.

2 Objectives of the internship

We would like to investigate a certain number of models in this framework
in combinations with various regularization by following these steps:

• extracting the spectral properties of the disordered kernel

• computing the generalization error in various regimes

Based on these "exact” model settings where the average over disorder can
be done precisely, we would like to analyze the typical behavior of learning
curves obtained with real data sets by looking in particular at the spectra
of the associated disordered kernels.
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