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State of the art:  
 
Our understanding of how the different distributed networks, such as in the mammals’ brain, 
function, relies largely on the use of proper methods to measure their ability to integrate and 
transfer information [1]. Signals from different functionally groups of neurons (different brain 
regions) are integrated to generate a coherent and multimodal landscape [2] associated to 
cognitive abilities. In order to understand the underlying mechanisms of the latter ones, one 
has to investigate how the information is integrated upon arrival as signal to a network node 
and how it is further conveyed. 
 
Several theoretical and computational tools have been developed over the past year aiming to 
capture, describe and predict the information transfer within networks, as this quantity is 
straight-forwardly associated with the information processing. Information transfer can be 
measured by a variety of directed information measures of which transfer entropy is being 
broadly used in the literature. For example, applications of transfer entropy are found in 
neuroscience, physiology, climatology, complex systems theory, economics and elsewhere 
(see e.g., [3] and references therein), demonstrating its importance in better understanding 
complex processes in different scientific fields [2]. 
 
Complex neural networks (one example of which is the human brain) are able to self-organize 
into different emergent states crucial for its healthy vs. pathological functioning (e.g., via 
external stimulus [4;5;6]) and cognition [7;8]. To investigate the role and impact of the 
network’s topological and its information transfer due the interactions between network 
modes, one can employ a dynamical model to simulate the activity of each node of the network 
and then study its collective behavior [9;10]. Evidently this global activity is being driven by 
the underlying nodes connectivity pattern (presence of hubs) [11]. Firing rate models such as 
the Wilson-Cowan model (see e.g.,[12]) can well capture the main dynamical features and 
generate simulated data to mimic the activity of a brain network. 
 
 
Goal of the internship:  
The initial goal of the internship will be to prepare numerical codes for the model and the 
setup of simple (at first) networks to generate simulated time-series and study the 
information transfer within a simple network. This task may be implemented either by 
preparing new “in-house” scripts or by using one of the available open-source neural network 
simulator, like for example the BRIAN platform [13] or The Virtual Brain [14]. Then, we aim to 
explore the impact of different types of topological network architectures (e.g., fully 
connected, randomly connected, small-world connection and scale-free connections). For each 
architecture, we will investigate the directional functionality (causal effects) and 
communication efficiency between nodes by measuring different information transfer 
quantities such as transfer entropy, mutual information etc., see e.g. [15; 1].  
 



 

 

Total Duration: 6 months with internship funding 
 
Requirements for the students: knowledge of either Python or MATLAB/OCTAVE or 
Fortran, C or C++ (numerical integration methods for systems of ODEs) 
 
Contact: mathias.quoy@cyu.fr and thanos.manos@cyu.fr  
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