CHEMISTRY MASTER - M2		
INTERNSHIP 2022-2023 (end of January – end of June)		
	CO2 adsorption/desorption kinetics in kerogen: multi-scale simulation	
IIILE	and in situ IR/Raman spectroscopy	
COMPETENCES	Physical Chemistry/Thermodynamics/Numerical Modeling/Spectroscopy	
/ INTERESTS	/CO2 storage	
SUBJECT	The internship will consist in carrying out an original joint experimental and	
	numerical study of the adsorption/desorption kinetics of CO_2 in kerogen within	
	the context of geological CO ₂ sequestration. The experimental part will take	
	place under the direction of Thierry Tassaing (molecular spectroscopy group)	
	and the numerical part under the direction of Amaël Obliger (theoretical	
	chemistry group).	
	Kerogen is the microporous organic phase of non-conventional hydrocarbon	
	reservoirs. This phase, which contains hydrocarbons, is responsible for the	
	very high CO2 adsorption capacity that makes these so-called source rocks	
	reservoirs interesting for CO ₂ sequestration. In view of the great structural	
	complexity of these kerogens, whose porosity is amorphous and can sometimes	
	give rise to strong swelling effects, experimental results are scarce and	
	numerical studies struggle to take into account the multiple spatial and	
	temporal scales that influence the adsorption/desorption kinetics of these	
	materials and that can play a significant role on a possible CO_2 sequestration	
	process.	
	Indeed, non-Fickian behaviors are observed during the expulsion of fluid	
	(desorption) from these matrices: the total amount of fluid recovered evolving	
	as t ⁿ (where t is time) with $n < 0.5$ whereas Fick's law predicts $n = 0.5$	
	[Monteiro PNAS 13, Kang AIPA 15]. Poromechanical effects as well as the	
	multiscale nature of porosity in kerogens could be responsible for these	
	behaviors.	
	In order to elucidate the link between these phenomena and the	
	adsorption/desorption kinetic properties of kerogens, the objectives of the	
	internship will be to experimentally obtain adsorption properties and	
	adsorption/desorption kinetic time curves as well as their interpretations and	
	secondly, to attempt to reproduce these results using a multiscale numerical	
	transport model. This study will allow to clarify the importance of the non-	
	Fickian effects on the kinetics and to explain its physical origin which remains	
	unknown and which cannot be revealed by the usual transport models	
	unknown and which cannot be revealed by the usual transport mouers.	

	[Monteiro_PNAS] P. J. M. Monteiro, C. H. Rycroft, G. I. Barenblatt, <i>Proc. Nat. Ac. Sci. USA</i> , 2013, <i>110</i> , 6241. [Kang_AIPA_15] J. Kang, F. Zhou, G. Ye, Y. Liu, <i>AIP Adv.</i> , 2015, <i>5</i> , 127119.	
	The thermodynamic and transport properties of kerogen-gas mixtures will be determined using an innovative method based on in situ infrared and Raman	
	microscopy. This method also allows to gain informations on adsorption and swelling kinetics on samples of micrometer to millimeter size	
	[Champeau_JSF_14, Dubois_JSF_18, Ongkasin_IJP_20]. The experiments will be performed with demineralized kerogen samples of intermediate maturity	
	To allow the comparison between these experimental results and those of molecular dynamics recently obtained in the group, we will develop a	
TECHNIQUES USED	multiscale transport model accounting for the diffusion/poromechanics coupling via the model of Edwards and Cohen [Edwards_AIC_95], solved by	
	the finite element method (code developed by Amaël Obliger)	
	[Champeau_JSF_14] M. Champeau, J. M. Thomassin, C. Jérôme and T. Tassaing, <i>J. Supercrit. Fluids</i> , 2014, <i>90</i> , 44-52. [Dubois JSF 18] J. Dubois, E. Grau, T. Tassaing and M. Dumon, <i>J. Supercrit</i> .	
	Fluids, 2018, 131, 150-15. [Ongkasin_IJP_20] K. Ongkasin, Y. Masmoudi, T. Tassaing, G. Le-Bourdon and E. Badens. Int. J. Pharm., 2020, 581, 119247.	
	[Edwards_AIC_95] Edwards, D. A.; Cohen, D. S., <i>AIChE J.</i> 1995, <i>41</i> (11), 2345– 2355.	
HOST LABORATORY	Institut des Sciences Moléculaires de Bordeaux	
TEAM	Theoretical chemistry and modelling group / Molecular spectroscope group	
	Dr. Amaël OBLIGER Dr. Thierry TASSAING	
SCIENTIFIC DIRECTOR	Tel :Tel : 05 40 00 28 92Mail :amael.obliger@u-bordeaux.frMail :thierry.tassaing@u-bordeaux.fr	
	Adress : Institut des Sciences Moléculaires, Bât. A12, 3ème étage, Bureau B15	
Possibility to pursue the internship until the end of August: YES 🗌 / NO 🔀		
Possibility to offer the internship to a M1 if not attributed to a M2: YES \Box / NO $igodot$		