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Quantum walks (QWs) can be used theoretically as discretizations of the Dirac equation, which
describes the motion of relativistic quantum particles of matter. In practice, QWs can be imple-
mented with quantum technologies and hence be used as actual quantum simulators (i.e., specific-
task, possibly analog rather than digital, quantum computers) for, in particular, the simulation of
fundamental-physics dynamics. Currently, however only NISQ (noisy intermediate scale quantum)
computers are available – and this still for some time ahead of us – , and so we ought to study the
effect of noise on these machines. It is known that the effect of temporal noise on QWs leads to
diffusion, while the effect of spatial noise leads to localization, and combining both leads to diffusion.
However, there is still work to be done on the continuum-limit descriptions of such noisy models,
on short, mid, and long time scales, and this is the purpose of the present proposal. We expect to
find models of diffusion, but also of noisy Dirac equations (see Ref. [1] for a first study on these).

I. EXTENDED ABSTRACT

A. A fundamental-physics-oriented introduction to
quantum walks

Quantum walks (QWs) are models of quantum trans-
port on a spacetime lattice. There are two classes of
QWs: discrete-time (DQWs), and continuous-time ones.
We focus on DQWs. The two fundamental properties
of DQWs are the following: (i) unitarity, i.e., “quantum-
ness” – which is not specific to discrete-time QWs but is
also present in continuous-time ones –, and (ii) locality,
which is specific to discrete-time QWs and corresponds
to the fact that these DQWs are (quantum) automata,
that is, the state of the walker at time t+ ε and position
x only depends on the states which at time t are within
a bounded spatial neighborhood around x, and the size
of this neighborhood is fixed.

This “locality” property could also be called “relativis-
tic locality”, in the sense that there is an upper bound
on the speed at which information can propagate in the
model. Actually, the relationship between DQWs and rel-
ativistic physics is truly fundamental: DQWs can be used
to discretize the Dirac equation, which describes the mo-
tion of relativistic particles of matter. DQWs, which as
we have seen are conceptually fundamental as discretiza-
tions of fundamental-physics equations of motion, can be
implemented with quantum technologies [2], i.e., they can
serve as tools for quantum simulation, that is, simulat-
ing a quantum system with another quantum system in
order to make the simulation tractable (no exponential
growth of the number of degrees of freedom).
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B. Noise in quantum walks: what is known

Currently, however – and still for some years ahead
of us – the only quantum simulators or small quantum
computers to which we have access are quite noisy, and
called NISQ (noisy intermediate-scale quantum) comput-
ers. This is one reason to be interested in the effect of
noise on quantum walks. While DQWs have – as the
Dirac equation –, a propagative, i.e., ballistic behavior,
that is to say, the spread of the distribution is linear in
the time t, noise has a non trivial effect on DQWs, which
has been studied numerically, and also analytically [3].
The results are essentially the following: at long times,
temporal noise leads to diffusion, spatial noise leads to lo-
calization, and the addition of temporal and spatial noise
to diffusion [3].

We are interested in the continuum-limit descriptions
of noisy DQWs (formally, the continuum limit can be ex-
plored by taking the spacetime-lattice step going to zero).
A first study has been done for temporal noise [1], which
echoes results from Refs. [4, 5]. Two directions can be
taken, both of which involve doing numerical simulations
to guide analytical studies. The first direction that can
be taken is to deepen our understanding of the results of
Ref. [1], so it would deal with continuum limits of DQWs
under temporal noise. The second direction that can be
taken is to investigate continuum limits of DQWs under
spatial noise.

C. Noise in quantum walks: what we are interested
in

1. First direction: continuum limit of temporally noisy
DQWs

In Ref. [1], we find a certain continuum limit for tem-
porally noisy DQWs. More precisely, we show the numer-
ical consistency of a temporally noisy DQW to simulate a
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Figure 1. Evolution of a wavepacket via a Lindblad equation with Dirac-equation Hamiltonian part and temporal noise.

Lindblad equation (partial differential equation typical of
noisy quantum systems). This Lindblad equation yields,
phenomenally, a quantum relativistic diffusion, where the
quantum particle first propagates (spread linearly depen-
dent on time) and then diffuses (spread depending on the
square root of time), see Fig. 1. Numerical consistency
means the following: the error committed by the dis-
cretization at the level of the solution of the equation,
between one time instant and the next one, goes to zero
with the time step. Convergence has not been proven.
There are serveral notions of convergence. Observational
convergence means the following: the error committed
between one time instant and an arbitrarily far other
time instant, goes to zero with the time step. It is not
guaranteed that any convergence to the Lindblad equa-
tion actually holds, since, e.g., at long times we know
that we have diffusion so some convergence may be prov-
able only towards a diffusion equation. The convergence
properties of the scheme also depend on the initial con-
ditions. These are the questions that we will explore.
Notice that the observational convergence of free DQWs
towards the Dirac equation has been proven [6].

2. Second direction: continuum limit of spatially noisy
DQWs

Regarding this second direction, the difficulties are
evoked in Ref. [1]. Basically, it is not at all guaranteed
that any analytical continuum limit can be found if we
introduce spatial noise, but in any case numerical studies
will guide us in this research.

3. Tools to study noisy quantum walks

When a quantum system is submitted to noise, the
state of the system is not anymore described by a state
vector in a Hilbert space, but by a density matrix, to
which we can associate a Wigner function. Our group
has already proved central-limit theorems for temporally
noisy QWs described by density matrices [7], and sug-
gested two different definitions of Wigner functions [8, 9],
which will be reviewed and used.
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