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Discrete-time quantum walks (DQWs) can be used as discretizations of the Dirac equation, which
describes the motion of relativistic quantum particles of matter. Such discretizations are both
unitary and strictly local, as the Dirac equation itself. In practice, DQWs can be implemented with
quantum technologies and hence be used as actual quantum simulators (i.e., specific-task quantum
computers, analog or digital), in particular for the simulation of fundamental-physics dynamics.
The path integral offers an alternative, insightful method to quantize a given classical theory (the

usual quantization procedure is canonical quantization); this method is grounded on the principle of
least action. As such, the path integral is particularly useful in semi-classical treatments. Moreover,
the generalization of the path integral to a very high number of degrees of freedom, namely, the
functional integral, which quantizes fields rather than only particles, has been truly fundamental in
the development of quantum field theory. The link between DQWs and the path integral is as old
as both topics (1940’s).
The aim of the present thesis is twofold. In the one-particle sector, i.e., regarding path (rather

than functional) integrals, the aim is to define a path integral for the Dirac equation based on a
DQW, with an associated one-particle Dirac Lagrangian; there will be difficulties coming from (i)
the particularities of the DQW discretization, but also from (ii) the Dirac equation itself. Preliminar
works on this topic include Refs. [1, 2]. In the multiparticle sector, i.e., at the level of fields, the
aim is to construct a fermionic functional integral based on DQWs, which up to our knowledge has
never been done. Several preliminary works will be of useful guidance for this second goal [3–7].

I. EXTENDED DESCRIPTION OF THE TOPIC

A. A fundamental-physics-oriented introduction to
discrete-time quantum walks

Quantum walks (QWs) are models of quantum trans-
port on a spacetime lattice. There are two classes of
QWs: discrete-time (DQWs), and continuous-time ones.
We focus on DQWs. The two fundamental properties
of DQWs are the following: (i) unitarity, i.e., “quantum-
ness” – which is not specific to discrete-time QWs but
is also present in continuous-time ones –, and (ii) strict
locality, which is specific to discrete-time QWs and cor-
responds to the fact that these DQWs are (quantum)
automata, that is, the state of the walker at time t + ε
and position x only depends on the states which at time
t are within a bounded spatial neighborhood around x,
and the size of this neighborhood is fixed.

This “strict locality” property could also be called “rela-
tivistic locality”, in the sense that there is an upper bound
on the speed at which information can propagate in the
model. Actually, the relationship between DQWs and
relativistic physics is truly fundamental: DQWs can be
used to discretize the Dirac equation, which describes the
motion of relativistic particles of matter.

Finally, DQWs can be implemented with quantum
technologies [8], i.e., they can serve as tools for quan-
tum simulation, that is, simulating a quantum system
with another quantum system in order to make the sim-
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ulation tractable (no exponential growth of the number
of degrees of freedom).

B. On the interest of path integrals in physics

The modern history of path integrals starts with Feyn-
man in the 1940’s and 1950’s [9, 10]. The path-integral
method is a quantization method, alternate to canonical
quantization, and which is the quantum version of the
principle of least action. The first interest of path in-
tegrals is thus conceptual, as a principle-of-least-action
perspective on any quantum mechanical problem. On
the practical side, path integrals have found particu-
larly relevant applications in certain quantum mechan-
ical problems [11]. In particular, path integrals are often
extremely useful in semi-classical treatments [12].

But, despite the previous benefits outlined, path in-
tegration owes its importance in modern physics to its
generalization to a system of a high number of degrees of
freedom, such as quantum field theory [12]; this general-
ization is called functional integration1, and it achieves
the goal of quantizing fields rather than only particles. In
particular, the quantization of non-Abelian gauge theo-
ries by Faddeev and Popov would have been almost im-
possible with the canonical approach [12]. Moreover, the
path-integral method has highlighted deep mathematical

1 Although we sometimes keep using the denomination “path in-
tegration” and let the context disambiguate between path and
functional integration.
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relationships between quantum field theory and statis-
tical mechanics of phase transitions; these relationships
would have been difficult to perceive otherwise [12, 13].
Finally, notice that path-integral quantization is mani-
festly Lorentz covariant, while canonical quantization is
not [14].

C. Dirac path integrals with discrete-time
quantum walks

The relationship between path integrals and DQWs is
as old as both topics. Indeed, the first DQW-like dis-
cretization of the Dirac equation appears in Feynman’s
work in the 1940’s [15], and in his book on path integrals
[11]. In Problem 2.6 of that book, it is suggested to write
down the propagator of the Dirac equation thanks to a
certain propagation model in discrete time and space2,
and this propagation model is, up to unitarity, a DQW
(although this name was coined only much later, with
Aharonov’s paper [16]). Since then, other works have
suggested writing the propagator of the Dirac equation
with a true DQW [1, 2].

1. One-particle path integral

Up to our knowledge, in most works in which the prop-
agator of the Dirac equation is written thanks to a DQW,
no Lagrangian is defined, and so the path-integral expres-
sion cannot be written under the insightful usual form.
We would like to see what are our options to define a
one-particle Lagrangian from a DQW, that would enter
the expression of the one-particle path integral.

One first issue is related to the particularities of the
DQW discretization of the Dirac equation: this dis-
cretization is characterized by a certain one-time-step
evolution operator (OEO), from which it is not clear how
to define a one-particle Lagrangian. The way to go may
probably be to use the effective Hamiltonian of the DQW,
defined as the log of the OEO. That being said, there ex-
ists another Hamiltonian that one can construct from the
OEO, namely, the local Hamiltonian of the DQW [17].

A second issue is related to the Dirac equation itself.
Indeed, defining a one-particle Dirac Lagrangian from the

Dirac Hamiltonian seems not to work, i.e., the standard
procedure is ill-defined in that case. Finally, there is a
last issue also related to the Dirac equation itself. Sup-
pose we manage, despite the previous difficulty, to define
a one-particle Dirac Lagrangian from the Dirac Hamilto-
nian. Since the Hamiltonian of the Dirac equation is ma-
trix valued, naively we may expect that the Lagrangian
will also be matrix valued. But the Lagrangian is usually
always a scalar, so how to interpret a matrix-valued La-
grangian? A way to circumvent this problem may be to
always work with matrix components instead of the full
matrix at once.

2. Functional integral

Up to our knowledge, most works (except Ref. [6], see
below) relating path integrals to DQWs deal only with
the one-particle sector, i.e., the integral is indeed a path
integral and not a functional integral. We would like to
define a fermionic functional integral, i.e., a functional
integral for Dirac fields, based on DQWs.

There are already two works defining an action for
Dirac fermions based on DQWs: the first defines a one-
time-step action [4], and the second a two-time-steps
action, as in usual lattice gauge theory [7]. The first
idea would be to define a functional integral with one of
the two previous actions. In the above-mentioned works
[4, 7], several results of classical field theory are provided
(e.g., a Noether’s theorem), which will be of useful guid-
ance. A generalization of Ref. [4] to curved spacetimes
is given in Ref. [5], and so such generalizations of the
functional integral may be envisaged.

Finally, let us mention that in Ref. [6] a functional
integral in discrete spacetime and based on quantum au-
tomata is provided for bosons interacting via a φ4 term,
but fermions are not treated. Fermions could be treated
in a similar way based on Ref. [3], which is also a way
we should explore since it would also lead to a fermionic
functional integral based on DQWs.
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