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1 The double descent paradox in Machine learning

The practical success of deep neural networks in machine learning came also
in apparent contradiction with the standard theory of statistical learning
regarding overfitting mechanisms. The problem is stated as follows: suppose
we want to learn a function

y = fθ(x)

based on a training data set Dtrain = {(xk, yk), k = 1, . . . N}, which relates
some input data x ∈ RD (a time series, an image. . . ) to some real observa-
tion y ∈ R for a regression problem or to a label y ∈ {0, 1} for a classification
problem. θ ∈ RM is a vector of parameters which maybe the weights of a
linear regression, the parameters of a neural network or any ML model. The
function is typically learned by performing a gradient descent on a loss func-
tion `(θ|Dtrain) and the central question then is to know whether the model
will generalize well on unseen data, i.e. what is the behaviour of `(θ|Dtest),
where Dtest is a test set of data. The traditional scenario expected from
statistical learning theory is that for fixed N when varying the number of
parametersM the train error will monotonically decrease to zero when reach-
ing some critical value ρ0 of the interpolation ratio ρ =M/N (= 1 typically
for a linear regression) while the generalization error will reach a minimum
for some value ρ? < ρ0 and increase again drastically for ρ > ρ? because of
overfitting. The surprise came when realizing that increasing further ρ may
possibly yield a better solution at some point far in the over parameterized
regime when some implicit regularization is present. Actually, in close anal-
ogy with the analysis of the spectrum of disordered quantum systems, this



question can be investigated with help of a field theory formalism where the
bare two-point function corresponds to the neural tangent kernel introduced
recently [2]

G0(x,x
′) = ∇Tθ fθ0(x)∇Tθ fθ0(x′)

corresponding to an L2 regularization of the solutions, while the central ob-
ject of interest is obtained by including a random potential attached to the
training data. Within this framework the generalization error as a function
of ρ can be analyzed by means of the spectral properties of the disordered
kernel. More precisely, under some general assumptions the generalization
properties of the model can be obtained in the linerar regime of ridge regres-
sion, thanks to random matrix theory applied to the disordered kernel [2].
This random matrix regime is actually valid as long as the dimension d of x
is large (d� 1)

2 Objectives of the internship

We would like to to investigate the generalization properties for low dimen-
sional systems i.e. for d = 1 or 2. In particular for d = 1 we may expect to
be able to obtain exact formulaes for the spectral density of the disordered
kernel out of which train and test errors can be computed. Hence given a
specific regularization we propose to:

• extract the spectral properties of the disordered kernel

• compute the generalization error in various regimes, namely under and
over-parameterized ones.

Based on these "exact” model settings where the average over disorder can
be done precisely, we would like to analyze the typical behavior of learning
curves obtained with real data sets by looking in particular at the spectra
of the associated disordered kernels.
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