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1 Context

Artificial neural networks correspond to highly parameterized differentiable non-
linear functions that can, for instance, help defining probability density func-
tions. The resulting parameterized distributions are known as deep generative
models named after their ability to learn how to ”generate” random instances.
Several types of generative models have been developed corresponding to differ-
ent combinations of parametric distributions and deep neural networks. Among
the great diversity of existing models, we can mention mixture models, en-
ergy based models such as restricted Boltzmann machines, flow-based generative
models such as normalizing flows, generative adversarial networks, autoregres-
sive models, variational autoencoders, diffusion models and discrete indexed
flows [1].

In the context of statistical physics and computational chemistry, deep gener-
ative models have been used to approximate the Boltzmann-Gibbs distribution
[2] and perform tasks such as speeding up physical computations [3] or com-
pute observables of physical systems [4, 5]. The parameters of these models are
optimized either by density estimation and maximum likelihood estimation, i.e.
training on data that is distributed according to the target distribution, or by
variational inference where the target energy function is used to maximize the
so-called Evidence Lower Bound (ELBO).

Both optimization targets seek at minimizing a loss function which can be
interpreted as the minimization of a variational free energy [6] using the Bogoli-
ubov inequality well known within the mean field approximation in statistical
physics. Critically, deep generative models do not require a factorized parti-
tion function and can thus approximate distributions that are unreachable by
traditional mean field approaches [7]. On the contrary, the bias introduced by
the variational modelling is typically expected to vanish for a sufficiently large
number of parameters. The challenge of these methods rather lies in the correct
estimation of the parameters that should minimize the loss function and that
cannot be computed analytically.

In practice, this minimization is carried out numerically with the help of
automatic differentiation. Its outcome is a single set of parameters that is ob-
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tained through a stochastic gradient descent. It is well known that the set of
parameters obtained following this procedure does generally not correspond to
the global minimum of the loss function. Despite the indisputable potential
of such methods, neural networks are limited by the large number of free pa-
rameters to optimize that is accompanied by an increase of the training data
required for good performance [8]. Moreover, one major weakness of deep mod-
els is the difficulty to estimate the uncertainty associated with their predictions
that should be representative of the error introduced by replacing the target
distribution with a sub-optimal variational one.

On the other hand, Bayesian inference is well known to be able to describe
the epistemic uncertainty about parameters conditional on a collection of ob-
served data. This conditional distribution over statistical parameters is known
as the posterior distribution. It can be estimated using Variational Bayesian
methods or by Bayesian Nonparametric Learning for instance. Nevertheless,
the gold standard approach is still to use Markov Chain Monte Carlo methods
to sample a Neural Network posterior distribution and using it, for instance, to
compute the predictive posterior distribution. It is a notoriously difficult task
due to the high-dimensionality and the numerous local minima of the likelihood
function. Finding optimized transition kernels that can mitigate such an issue
remains an open research topic, e.g. [9]. Bayesian inference applied to neural
networks parameters is referred to as Bayesian Neural Networks.

2 PhD proposal

The overall goal of the PhD candidate will be to study the impact of Bayesian
neural networks for generative modelling of a Boltzmann distribution. A first
research axis will consist in developing methods able to sample neural posteriors
using Markovian diffusion processes such as Brownian motion, Langevin diffu-
sion in addition to HMC. Such methods will then be used to estimate the bias
introduced by replacing a Bayesian neural network approximation in a physical
numerical computation, by applying it for example on a quantum field theory
or a spin system.

Secondly, Bayesian neural networks will be used to capture the epistemic
uncertainty of the parameters of a surrogate variational distribution i.e. a deep
generative model. Lastly, the PhD student will study the impact of a model
combining both the physical aleatoric and Bayesian epistemic uncertainties for
physical simulation, in particular on Monte Carlo simulations, with application
in statistical physics and material science.

3 Profile

The candidate should have a strong theoretical and numerical interest and a spe-
cial care about software development. A Master’s degree in probability theory
& machine learning and/or theoretical physics & statistical physics is required.
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Programming experience in python is a distinct advantage. Fluency in French
is not required.

4 Supervision & Application

Supervisors - Eiji Kawasaki, Eric Barat CEA LIST
Director - Alberto Rosso LPTMS CNRS

Please email your resume, cover letter and any letters of recommendation to
eiji.kawasaki@cea.fr
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