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Data assimilation looks at characterizing the state x of a complex system, given several incomplete observations
y. A simple formulation of the problem is:

y = H(x) + ϵ (1)

where H is the operator linking x and y, and ϵ models the error in H . Multiple methods, such as Kalman filter,
Particle filter, variational approaches or Deep Learning ones exist to solve this inverse problem [1]. However, most
of these methods require a pre-defined mathematical model of the H operator, or have definitions of H that are fully
black boxes.

Physics Informed Neural Networks (PINNs) [2] are deep learning models containing (physic-based) differential
equations in the loss function. In this internship, we aim at developing a PINN model for data assimilation:

x = ΨPINN(y) (2)

where ΨPINN is a learned Neural Network, but with a loss function that is informed by pre-defined physical laws.
Moreover, these laws can contain learned parameters to increase their flexibility and/or help in the characterization of
the state of the system.

This internship has two main objectives:

1. compare the performances of several state of the art data assimilation methods when dealing with multiscale
complex systems such as turbulence or atmospheric dynamics.

2. introduce a data assimilation scheme based on PINNs, and compare it against the state of the art.

This study will be performed on two multiscale non-linear dynamical models, for which the state x can be fully
known. We will study a shell model of turbulence [3] and the Lorenz-96 model of the atmosphere [4].

The shell model of turbulence is described by the following set of equations:

dun
dt

= i(akn+1un+2u
∗
n+1 + bknun+1u

∗
n−1 − ckn−1un−1un−2)− νk2nun + fn (3)

for n = 1, 2, 3, ..., un being a Fourier component of the velocity field, associated to the wave numbers kn. These are
taken to be kn = k0λ

n, with λ > 1 being the shell spacing parameter, and k0 > 0.

The Lorenz-96 model is described by the following set of equations:

dxn
dt

= (xn+1 − xn−2)xn−1 − xn + F (4)

for n = 1, 2, 3, ..., xn being a value of some atmospheric quantity in a sector of a latitude circle, and F being a
forcing.

On these specific study cases, the considered observations y will be the large scale dynamics of the system together
with some local observations of the small scale dynamics. The aim is to recover the full state x containing all the
dynamics. Figure 1 presents a visual description of y and x.
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Figure 1: Visual representation of the observation y (in red) and the full state of the system x (in blue).

The study is interdisciplinary with an interplay of applied mathematics, fluid physics, geophysics and informatics.
This internship is part of a larger project in collaboration with the LISN and INRIA at Paris Saclay (Cyril Furtlehner
and Sergio Chibbaro), and it can be followed by a Phd thesis on different axis. Depending on the skills of the
candidate, different tracks can be explored.

Motivated students should send a CV and a motivation letter to : carlos.granero-belinchon@imt-atlantique.fr.
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