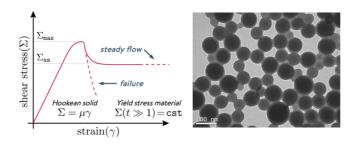
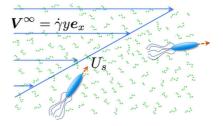
M2 Internship Proposal

Microscopic theory of the stress tensor in dense materials


Laboratory :MSC (Matière et Systèmes Complexes), UMR 7057Address :10 Rue Alice Domon et Léonie Duquet, 75013 ParisSupervision :Frédéric van Wijland (frederic.van-wijland@u-paris.fr)


Joël Mabillard (joel.mabillard@u-paris.fr)

Web page : Theory group MSC

Thesis possibility after internship : YES

The **stress tensor**, introduced by Cauchy in 1822, quantifies the local distribution of forces within materials and links them to deformations, forming the basis of continuum mechanics. Over the years, stress has become a unifying concept across physics and engineering, governing elasticity and fracture in solids, viscous flow in fluids via the Navier-Stokes equations, and appearing as the stress-energy tensor in relativity and field theories. In modern statistical and condensed matter physics, stress connects microscopic dynamics to macroscopic transport. It determines pressure and shear in molecular simulations, enters Green-Kubo relations for transport coefficients, and controls the mechanical response of disordered materials like glasses and amorphous solids^{1,2} (Fig. 1, left). The stress tensor also plays a key role in active matter, with active realizations of stress driving nonequilibrium dynamics^{3,4} (Fig. 1, right).

Figure 1. Left: Yield stress material (Stress/strain curve and TEM picture of PLLA and PS particles, Fig. from Nicolas et al^2). Right: Schematic view of active stress stemming from active swimmers (Fig. from Choudhary et al^5).

Theoretical descriptions of the stress span multiple scales, reflecting the level of coarse-graining. Macroscopic models⁶ describe stress via continuum constitutive equations (viscoelastic, viscoplastic, or viscoelastoplastic models), reproducing experimental rheology but with parameters fitted rather than derived. Mesoscopic models, such as elastoplastic approaches, represent materials as assemblies of elastic regions undergoing stochastic plastic rearrangements, capturing intermittent flow and stress redistribution but relying on empirical rules like in the Hébraud-Lequeux model⁷. Microscopic formulations, including microstructural⁸ and mode-coupling theories⁹, express stress in terms of interparticle forces and correlations, offering a first-principles link between microscopic dynamics and macroscopic response. The challenge lies in handling many-body correlations and achieving consistent closures.

The aim of this internship is to develop a **first-principles microscopic theory of the stress tensor in dense materials**. Starting from the Irving-Kirkwood formulation of the stress tensor for a system of interacting particles, the project will focus on achieving a closure of the microscopic stress equation by building on recent theoretical developments^{10,11}. The methodology will integrate advanced analytical techniques including effective and mean field theory, stochastic approaches, and projection operator methods. This analytical framework will be complemented by numerical simulations, such as event driven algorithms of hard spheres or hard disks, to validate and extend the theory. The resulting phenomenology, covering stress fluctuations and redistribution, will emerge from the combined insights of both analytical derivations and numerical analysis. This framework will provide new tools for analyzing stress fluctuations and redistribution in disordered and nonequilibrium systems.

References

- [1] D. Bonn et al, Yield Stress Materials in Soft Condensed Matter, Rev. Mod. Phys. 89, 035005 (2017).
- [2] A. Nicolas et al., *Deformation and flow of amorphous solids: Insights from elastoplastic models,* Rev. Mod. Phys. **90**, 045006 (2018).
- [3] M. C. Marchetti, Hydrodynamics of soft active matter, Rev. Mod. Phys. 85, 1143 (2013).
- [4] F. Jülicher et al, Hydrodynamic theory of active matter, Rep. Prog. Phys. 81, 076601 (2018).
- [5] A. Choudhary et al., *Orientational dynamics and rheology of active suspensions in weakly viscoelastic flows*, Comm. Phys. **6**, 163 (2023).
- [6] W. R. Schowalter, Mechanics of non-Newtonian fluids (Pergamon Press, Oxford, 1978).
- [7] P. Hébraud and F. Lequeux, *Mode-Coupling Theory for the Pasty Rheology of Soft Glassy Materials*, Phys. Rev. Lett. **81**, 2934 (1998).
- [8] E. Nazockdast and J. F. Morris, *Microstructural theory and the rheology of concentrated colloidal suspensions*, J. Fluid Mech **713**, 420-452 (2012).
- [9] M. Fuchs and M. Cates, *Theory of Nonlinear Rheology and Yielding of Dense Colloidal Suspensions*, Phys. Rev. Lett., **89**, 248304 (2002).
- [10] N. Cuny, R. Mari, and E. Bertin, *Microscopic Theory for the Rheology of Jammed Soft Suspensions*, Phys. Rev. Lett 127, 218003 (2021).
- [11] N. Cuny, E. Bertin, and R. Mari, *Microscopically grounded constitutive model for dense suspensions of soft particles below jamming*, Phys. Rev. Fluids 8, 053302 (2023).